149 5th Ave New York	Aya Abdelsalam Ismail	ismail.aya@gene.com (240) 479-5543
Education	Ph.D. candidate in Computer Science University of Maryland, College Park, MD (Fall 2016 – Summe Advisors: Soheil Feizi & Héctor Corrada Bravo Research Focus Interpretability of neural models, long term fo and applications of deep learning in neuroscience and health int GPA: 3.97/4.0	recasting in time series
	B.Sc in Computer & Communication Engineering Alexandria University, Alexandria, Egypt (2008 – 2013) First degree with honors	
Selected Publications	Aya Abdelsalam Ismail, Julius Adebayo, Hector Corrada B Kyunghyun Cho. "Concept bottleneck generative models." T tional Conference on Learning Representations, 2024.	· - ·
	Aya Abdelsalam Ismail , Sercan O. Arik, Jinsung Yoon, Arand Tomas Pfister. "Interpretable Mixture of Experts." Trans Learning Research, 2023.	
	Aya Abdelsalam Ismail, Héctor Corrada Bravo [*] , Soheil F Learning Interpretability by Saliency Guided Training". Neur cessing Systems (NeurIPS), 2021.	
	Aya Abdelsalam Ismail, Mohamed Gunady, Héctor Corrada Bravo [*] , Soheil Feizi [*] "Benchmarking Deep Learning Interpretability in Time Series Predictions". Neural Information Processing Systems (NeurIPS), 2020.	
	Aya Abdelsalam Ismail , Mohamed Gunady, Luiz Pessoa, H Soheil Feizi * "Input-Cell-Attention Reduces Vanishing Salienc Networks". Neural Information Processing Systems (Ne	y of Recurrent Neural
Research Experience	Senior Research Scientist Frontier Research MLDD, Genentech	Oct 2022 – Present
	• Interpretable Controllable Generation When generating protein sequences using neural models fine-grained control over such models, it is also challengin key concepts the models base generation on. Here, we 'i concept layer as part of the generative process to help be of a generative model.	s it is difficult to gain ng to understand what nject' an interpretable
	Research Intern Google Cloud AI Research June	2021 – December 2021
	• Inherently Interpretable Architectures for Structured Data. Replacing blackbox neural network trained on the entire dataset with multiple whitebox models each trained with a subset of data. Given that the whitebox models are interpretable, the resulting end-to-end architecture is inherently in- terpretable.	
	Graduate Assistant University of Maryland	Aug 2017 Aug 2022
	 University of Maryland Neural Network Training Procedure for Improved Introduce an interpretable training procedure to reduce a predictions while retaining the predictive performance of done by iteratively marking features with small gradients 	noisy gradients used in of the model. This is

done by iteratively masking features with small gradients while maximizing the similarity of the model outputs for both masked and unmasked inputs.

	 Benchmarking Deep Learning Interpretability in Time Series. Comparing the performance of saliency-based methods across neural architectures, in a benchmark of synthetic time series data, while reporting multiple metrics to evaluate the performance of methods for detecting feature importance over time. Reducing vanishing saliency of recurrent neural networks (RNN). Analyzed saliency-based methods for RNNs and showed that RNN saliency vanishes over time, biasing detection of salient features to later time steps. Proposed a modified RNN cell structure (input-cell-attention) to mitigate vanishing
	 Improving long horizon forecasting in neural sequence models. Introduced expectation bias to long short-term memory networks (LSTMs) to improve long-horizon forecasting in time series data.
	• Alzheimer prognosis using Deep Learning. Developed Alzheimer's prognosis models using deep neural networks. Enabled patient prognosis from 5 to 10 years in-advance before showing clear symptoms of dementia.
	• Estimation of Dynamic connectivity in Functional Magnetic Imaging using Recurrent Neural Networks Used deep neural networks to model temporal dynamics and dependencies in brain networks observed via functional magnetic resonance imaging (fMRI).
	Research InternCOMCAST AI Research LabJune - Aug 2018 & June - Aug 2019
	• Multi-Modal Emotion Recognition Developed an interpretable multi-modal (text, video and audio) attention based neural network for emotion recognition in movies. Proposed an effective scheme for training multi-modal neural networks.
Teaching Experience	Teaching AssistantAug 2016 – PresentUniversity of MarylandAug 2016 – PresentDeep Learning FoundationsIntroduction to Data ScienceData StructuresBioinformatics Algorithms, Databases and Tools
Engineering Experience	Software Engineer Itworx Dec 2014 – June 2016 Designed and developed large scale online business solutions for telecommunications companies using C# and sharepoint.
	Software Engineer Valeo Oct 2013 – Nov 2014 Developed backbone modules for automotive operating system using embedded C. Maintained existing modules and designed component and unit tests.
Invited talks	 NCI December 2021. Genentech March 2021. G-Research December 2020. Guest Lecturer: UMD CMSC828 Deep Learning Foundation 2020 and 2021.
Awards	 Ann G. Wylie dissertation fellowship \$15000 [2021]. NeurIPS 2019 Travel award. University Fellowship, University of Maryland \$20,000 [2016-2017]. Summer Dean's Fellowship for distinguished students, University of Maryland \$5,000 [2018] (Declined) Best Demo award. ACM SIGSPATIAL GIS 2015 Ranked as 3rd highest score world wide in Cambridge International AS Computer Science exam for June 2008.

Programming	Python, C/C++, C#, embedded C and MATLAB Deep-Learning Tools: Tensorflow and Pytorch
Graduate courses	Machine Learning, Advanced Numerical Optimization, Network analysis and Model- ing of biological systems, Computational and Mathematical Analysis of Biological Net- works across Scales, Computational Genomics, Computational Linguistics, Interactive Data Analytics.
Voluntary service	 Reviewer for ICML('20,'21,'22,'23,'24), NeurIPS('20,'21,'22,'23,'24), ICLR('20,'21,'22,'23), AAAI('23,'24), ML Retrospectives Workshop NeurIPS('20). Instructor for AI4All ('20)
References	 Kyunghyun Cho, Associate Professor, New York University Senior Director of Frontier Research Prescient Design, Genentech. Héctor Corrada Bravo, Principal Scientist, Genentech. Soheil Feizi, Assistant Professor, Center for Machine Learning, UMIACS, Computer Science, University of Maryland. Sercan Ö. Arık Research Scientist, Google. Faisal Ishtiaq, R&D Media Analytics Director, COMCAST Labs.